モノ > ホビー・ホーム用品 > ホビー・カルチャー > 絵本・書籍 > つくりながら学ぶ! Pythonによる因果分析 ~因果推論・因果探索の実践入門

このシリーズはすべて購入していますが今回もピカイチです。
誤植や数式の誤りが多すぎる

つくりながら学ぶ! Pythonによる因果分析 ~因果推論・因果探索の実践入門

つくりながら学ぶ! Pythonによる因果分析 ~因果推論・因果探索の実践入門 1
  • つくりながら学ぶ! Pythonによる因果分析 ~因果推論・因果探索の実践入門 1
¥3151 国内発送
購入期限 :
期限切れ(リクエスト)
数量 :
あと1個
状態
新品・未使用
ブランド
 
モデル
 
カテゴリ
ホビー・ホーム用品
ホビー・カルチャー
絵本・書籍
買付店舗
買付地
日本

商品の説明
ビジネスで実践できるデータ分析力をマスター!ビジネス現場ではデータ活用の重要性がますます高まっています。データに基づいた経営施策の実施とその効果検証のためには、一般的な統計指標(平均、標準偏差、相関)だけでなく「因果」にまで分析を広げる必要があります。因果分析の重要な2つの領域である「因果推論」および「因果探索」について、実際にプログラムを実装しながら学ぶ書籍です。因果推論や因果探索を学びたいビジネスパーソンや、初学者の方を対象としています。

・因果推論とは「テレビCM放映で、商品購入量がどれくらい増えたのか」「?研修の実施で、社員スキルがどの程度向上したのか」?など、なんらかの施策を実施した際に、その施策の効果を推定する手法です。
・因果探索とは「生活習慣と疾病の調査」「働き方改革に伴う社員調査」など、アンケート調査等で収集した各項目間の因果関係を明らかにする試みです。

「因果推論、因果探索とはどのようなものか」「因果推論、因果探索を実施するには、具体的にどうしたら良いのか・分析プログラムをどう実装したら良いのか」「因果推論、因果探索が、どのように機械学習やディープラーニングと結びついているのか」が理解・習得できる内容となっています。

プログラミング言語Python、実行環境Google Colaboratory、機械学習ライブラリscikit-learn、PyTorchで実際に手を動かしながら実装し、習得していきます。データに基づいた経営・ビジネスを実践するうえでスタンダードな手法となる因果分析をマスターしよう。

Part 1:因果推論
第1章 相関と因果の違いを理解しよう
第2章 因果効果の種類を把握しよう
第3章 グラフ表現とバックドア基準を理解しよう
第4章 因果推定を実装しよう
第5章 機械学習を用いた因果推論
Part 2:因果探索
第6章 LiNGAMの実装
第7章 ベイジアンネットワークの実装
第8章 ディープラーニングを用いた因果探索

商品の詳細 - 色・サイズ

色に関して、撮影状況やご使用のパソコン環境により、実物と多少色が異なる場合がございます。サイズに関して、ブランドや商品によって実際のサイズと異なる場合がございますので、ご不明な場合は、出品者にお問い合わせください。


サイズ指定なし
フリーサイズ

ビジネスで実践できるデータ分析力をマスター!

ビジネス現場ではデータ活用の重要性がますます高まっています。データに基づいた経営施策の実施とその効果検証のためには、一般的な統計指標(平均、標準偏差、相関)だけでなく「因果」にまで分析を広げる必要があります。
本書は因果分析の重要な2つの領域である「因果推論」および「因果探索」について、実際にプログラムを実装しながら学ぶ書籍です。因果推論や因果探索を学びたいビジネスパーソンや、初学者の方を対象としています。

・因果推論とは「テレビCM放映で、商品購入量がどれくらい増えたのか」「?研修の実施で、社員スキルがどの程度向上したのか」?など、なんらかの施策を実施した際に、その施策の効果を推定する手法です。
・因果探索とは「生活習慣と疾病の調査」「働き方改革に伴う社員調査」など、アンケート調査等で収集した各項目間の因果関係を明らかにする試みです。


本書は「因果推論、因果探索とはどのようなものか」「因果推論、因果探索を実施するには、具体的にどうしたら良いのか・分析プログラムをどう実装したら良いのか」「因果推論、因果探索が、どのように機械学習やディープラーニングと結びついているのか」が理解・習得できる内容となっています。

プログラミング言語Python、実行環境Google Colaboratory、機械学習ライブラリscikit-learn、PyTorchで実際に手を動かしながら実装し、習得していきます。

データに基づいた経営・ビジネスを実践するうえでスタンダードな手法となる因果分析をマスターしよう。

Part 1:因果推論
第1章 相関と因果の違いを理解しよう
第2章 因果効果の種類を把握しよう
第3章 グラフ表現とバックドア基準を理解しよう
第4章 因果推定を実装しよう
第5章 機械学習を用いた因果推論
Part 2:因果探索
第6章 LiNGAMの実装
第7章 ベイジアンネットワークの実装
第8章 ディープラーニングを用いた因果探索

日本語での因果推論入門チュートリアルとしては貴重

送料・発送方法

※配送方法が複数ある場合はカート内にて変更ができます。
※配送会社の状況等によって、商品到着日が遅れる場合がございます。あらかじめご了承ください。

配送方法 送料 追跡 配送目安
その他(配送無料)¥0なし5日~10日