競技プログラミング入門書として最適
元の知識によって評価が変わりそう
元の知識によって評価が変わりそう
問題解決力を鍛える!アルゴリズムとデータ構造
商品の説明
◆◆ITエンジニア本大賞2021 特別賞受賞!!◆◆
競技プログラミング経験が豊富な著者が、「アルゴリズムを自分の道具としたい」という読者に向けて執筆。入門書を標榜しながら、AtCoderの例題、C++のコードが充実。入門書であり実践書でもある、生涯役立つテキストを目指した。
【推薦の言葉】
プログラムが「書ける」ことと、効率の良い結果を得ることには大分ギャップがある。本書は、どのようにすれば効率のよい結果が得られるか? すなわちどのようなアルゴリズムを採用すればよいか? という点に対して、幅広くかつ明快に解説している。
また本書は、アルゴリズム初心者に対して、アルゴリズムへの興味を惹かれるように記述されている。アルゴリズム上級者への初めの一歩には最適であろう。
――河原林健一(国立情報学研究所副所長)
【全体を通して、アルゴリズムの設計技法を重視した構成】
まず、1、2章でアルゴリズムと計算量について概観します。そして、3~7章が、早くも本書のメインパートといえる部分であり、「アルゴリズムの設計技法」について詳しく解説します。これらの設計技法に関する話題は、多くの書籍では、最後の方で簡単に説明しています。しかし本書は、現実世界の問題を解決するための実践的なアルゴリズム設計技法の鍛錬を目指しています。そこで、アルゴリズム設計技法について前半で詳しく解説する構成としました。そして、これらの設計技法が後半の章でも随所に使われていくことを示していきます。
その後、8~11章では、設計したアルゴリズムを効果的に実現するうえで重要となるデータ構造を解説します。データ構造について学ぶことで、アルゴリズムの計算量を改善したり、また、C++やPythonなどで提供されている標準ライブラリの仕組みを理解して、それらを有効に活用したりすることができるようになります。
そしていったん、12章でソートアルゴリズムについての話題を挟んだ後に、13~16章でグラフアルゴリズムについて解説します。グラフは、非常に強力な数理科学的ツールです。多くの問題は、グラフに関する問題として定式化することで、見通しよく扱うことができるようになります。また、グラフアルゴリズムを設計するとき、3~7章で学ぶ設計技法や、8~11章で学ぶデータ構造が随所で活躍します。
最後に、17章で PとNPに関する話題を解説し、世の中には「効率的に解くアルゴリズムを設計することができそうにない難問」が多数あることを見ます。18章で、これらの難問に取り組むための方法論をまとめます。ここでも、動的計画法 (5章) や貪欲法 (7章) といった設計技法が活躍します。
競技プログラミング経験が豊富な著者が、「アルゴリズムを自分の道具としたい」という読者に向けて執筆。入門書を標榜しながら、AtCoderの例題、C++のコードが充実。入門書であり実践書でもある、生涯役立つテキストを目指した。
【推薦の言葉】
プログラムが「書ける」ことと、効率の良い結果を得ることには大分ギャップがある。本書は、どのようにすれば効率のよい結果が得られるか? すなわちどのようなアルゴリズムを採用すればよいか? という点に対して、幅広くかつ明快に解説している。
また本書は、アルゴリズム初心者に対して、アルゴリズムへの興味を惹かれるように記述されている。アルゴリズム上級者への初めの一歩には最適であろう。
――河原林健一(国立情報学研究所副所長)
【全体を通して、アルゴリズムの設計技法を重視した構成】
まず、1、2章でアルゴリズムと計算量について概観します。そして、3~7章が、早くも本書のメインパートといえる部分であり、「アルゴリズムの設計技法」について詳しく解説します。これらの設計技法に関する話題は、多くの書籍では、最後の方で簡単に説明しています。しかし本書は、現実世界の問題を解決するための実践的なアルゴリズム設計技法の鍛錬を目指しています。そこで、アルゴリズム設計技法について前半で詳しく解説する構成としました。そして、これらの設計技法が後半の章でも随所に使われていくことを示していきます。
その後、8~11章では、設計したアルゴリズムを効果的に実現するうえで重要となるデータ構造を解説します。データ構造について学ぶことで、アルゴリズムの計算量を改善したり、また、C++やPythonなどで提供されている標準ライブラリの仕組みを理解して、それらを有効に活用したりすることができるようになります。
そしていったん、12章でソートアルゴリズムについての話題を挟んだ後に、13~16章でグラフアルゴリズムについて解説します。グラフは、非常に強力な数理科学的ツールです。多くの問題は、グラフに関する問題として定式化することで、見通しよく扱うことができるようになります。また、グラフアルゴリズムを設計するとき、3~7章で学ぶ設計技法や、8~11章で学ぶデータ構造が随所で活躍します。
最後に、17章で PとNPに関する話題を解説し、世の中には「効率的に解くアルゴリズムを設計することができそうにない難問」が多数あることを見ます。18章で、これらの難問に取り組むための方法論をまとめます。ここでも、動的計画法 (5章) や貪欲法 (7章) といった設計技法が活躍します。
商品の詳細 - 色・サイズ
色に関して、撮影状況やご使用のパソコン環境により、実物と多少色が異なる場合がございます。サイズに関して、ブランドや商品によって実際のサイズと異なる場合がございますので、ご不明な場合は、出品者にお問い合わせください。
サイズ | 指定なし |
---|---|
フリーサイズ | ○ |
大槻 兼資
現在、株式会社NTTデータ数理システム所属。
雑誌「Software Design」にて、「パズルで鍛えるアルゴリズム力」の連載を執筆している。その他 Qiita などで、アルゴリズム関連の話題を解説する啓蒙活動を推進中。競技プログラミングには現在も趣味の一環として参加している。
秋葉 拓哉
現在、株式会社Preferred Networks執行役員。機械学習システム、大規模並列分散機械学習の研究開発に従事。
著書に『プログラミングコンテストチャレンジブック 第2版』マイナビ(2012)などがある。学生時代には競技プログラミングに夢中になり、国内大会では優勝多数、国際決勝大会への出場を10度以上経験。
アルゴリズムを考える方法が分かりやすく書かれている
送料・発送方法
※配送方法が複数ある場合はカート内にて変更ができます。
※配送会社の状況等によって、商品到着日が遅れる場合がございます。あらかじめご了承ください。
配送方法 | 送料 | 追跡 | 配送目安 |
---|---|---|---|
その他(配送無料) | ¥0 | なし | 5日~8日 |